Our Research Members

Herbert Y. Gaisano
Gaisano, Herbert Y.
MD, FRCPC, FACP
U Of T Appointments

Professor, Departments of Medicine and Physiology

Contact Information
Medical Sciences Building, Rooms 7358 and 7368
1 King's College Circle
Toronto, ON M5S 1A8
Phone: 416-978-1526
Fax: 416-978-8765
herbert.gaisano@utoronto.ca
Diabetes Related Research Activities:

Research in the Gaisano lab is focused on molecular mechanisms regulating exocytosis, employing islet cells as models. We were one of the firsts to demonstrate that SNARE proteins originally found to mediate neurotransmitter release are conserved in non-neuronal cells, including the pancreatic islet to regulate secretion. We contributed to the original work showing SNARE protein regulation of insulin granule exocytosis, and subsequently contributed much of the work showing how SNARE proteins physically and functionally interact with beta-cell ion channels (Kv, KATP, Ca2+) to regulate the intricate sequence of ion fluxes, membrane potential and exocytotic fusion events leading to secretion. Current efforts are directed at: 1) SNARE proteins regulation of newcomer granule exocytosis and compound insulin granule fusion, and employing such molecules by viral gene transfer to rescue type 2 diabetes; 2) excitosome formation of SNAREs with Kv and Ca2+ channels during insulin granule docking and priming; and 3) islet alpha cell secretory mechanisms and crosstalk with beta- and delta-cells in health and their dysregulation in diabetes. This lab has in place a full spectrum of state-of-the-art single islet cell analyses for rodent and human islets, including patch clamp electrophysiology and capacitance measurements on dispersed cells and intact islets within pancreas slices, imaging of single granule exocytosis by TIRFM, single islet cell (beta, alpha and delta cells) imaging within whole islet by confocal and multi-photon microscopy, and high-resolution FRET analysis of molecular interactions.

This lab also has full capabilities to perform assays for in vivo glucose homeostasis, including glucose clamps and surgical pancreatic duct perfusion of viruses for in vivo rescue of diabetic rodent models; islet cell biology assays, including islet isolation, islet perifusion secretory assays, assessment of intact islets within pancreatic slices in diabetic models, E.M.; biochemistry (immunoprecipitation), molecular biology and viral gene transfer (adeno/AAV/lentivirus).

Adria Giacca
Giacca, Adria
U Of T Appointments

Professor, Department of Physiology and Department of Medicine

Contact Information
Medical Sciences Building, Room 3336
1 King's College Circle
Toronto, ON M5S 1A8
Phone: 416-978-0167
Fax: 416-978-4373
adria.giacca@utoronto.ca
View website
Diabetes Related Research Activities:

The primary theme of A.G.’s research is the investigation of the effects of excess circulating energy substrates, in particular free fatty acids, on insulin action, secretion and kinetics, and the implication of these effects for the pathogenesis of diabetes. Secondary themes of research are the studies of the effects of nutrient and insulin excess in animal models of atherosclerosis and cancer .

Richard E. Gilbert
Gilbert, Richard E.
MD, PhD, FRCPC
U Of T Appointments

Professor, Department of Medicine

Other Appointments

Head, Division of Endocrinology & Metabolism, St. Michael’s Hospital
Canada Research Chair in Diabetes Complications

Contact Information
St. Michael's Hospital
61 Queen Street East
Toronto, ON M5C 2T2
Phone: 416-867-3747
richard.gilbert@utoronto.ca
View website
Diabetes Related Research Activities:

Research in the Gilbert lab focuses on the pathogenesis of diabetes complications as a way to evolve new therapies to prevent their development and attenuate their progression. Current projects involve translational research in diabetic nephropathy, retinopathy and heart failure, exploring novel pharmacological treatments and the use of adult stem cells to regenerate diseased tissue.

Stephen Girardin
Girardin, Stephen
PhD
U Of T Appointments

Associate Professor, Department of Laboratory Medicine & Pathobiology
Academic Director, Microscopy Imaging Laboratories (MIL), Faculty of Medicine

Contact Information
Medical Sciences Building, Room 6336
1 King's College Circle
Toronto, ON M5S 1A8
Phone: 416-978-7507
stephen.girardin@utoronto.ca
View website
Diabetes Related Research Activities:

We study the role of a mitochondrial named NLRX1 in diabetes. Our preliminary research has identified that NLRX1 plays a role in the regulation of body weight and of obseity-induced diabetes in vivo. Because NLRX1 was identified as a key regulator of apoptosis during inflammation, we are interested in identifying how this mitochondrial protein links obesity and diabetes with inflammation and cell death.

Rick Glazier
Glazier, Rick
MD, MPH, FCFP
U Of T Appointments

Professor, Department of Family and Community Medicine

Other Appointments

Senior Scientist, Institute for Clinical Evaluative Sciences
Scientist, Centre for Research on Inner City Health, St. Michael’s Hospital

Contact Information
St. Michael's Hospital, Centre for Research on Inner City Health
30 Bond Street
Toronto, ON M5B 1W8
Phone: 416-864-6060 x77444
glazierr@smh.ca
Diabetes Related Research Activities:

Diabetes in primary care – processes of care, impact of incentives, health disparities.
Risk factors for diabetes, especially socioeconomic status, ethnoracial background and immigration, neighbourhood walkability.

Michael Glogauer
Glogauer, Michael
DDS, PHD
U Of T Appointments

Associate Professor, Faculty of Dentistry; Faculty of Medicine

Other Appointments

Hospital For Sick Children, Mount Sinai Hospital, Sunnybrook Health Sciences Centre, and Toronto Rehab

Contact Information
Room 221, Fitzgerald Building
150 College Street
Toronto, ON M5S 3E2
Phone: 416-978-0163
Fax: 416-978-5956
michael.glogauer@utoronto.ca
View website
Diabetes Related Research Activities:

Impact of diabetes on innate immunity and neutrophil functions. Impact of diabetes on oral health and periodontal diseases. Impact of diabetes on osteoimmunology.

Carol E. Greenwood
Greenwood, Carol E.
PhD
U Of T Appointments

Professor, Department of Nutritional Sciences

Other Appointments

Senior Scientist, Rotman Research Institute, Baycrest

Contact Information
Baycrest Centre, Brain Health Complex, Rm 741
3560 Bathurst Street
Toronto, ON M6A 2E1
Phone: 416-785-2500 x2785
Fax: 416-785-4230
carol.greenwood@utoronto.ca
View website
Diabetes Related Research Activities:

Research in the Greenwood lab is focused on understanding the effect of diet and metabolic disorders, including type 2 diabetes, on the retention or loss of cognitive function with aging. Our studies, in both humans and animal models, show that the consumption of diets which promote obesity and type 2 diabetes are associated with more rapid decline in cognitive function. By contrast, consumption of healthy diets associates with retention of cognitive function. Our current interest lies in understanding the adverse brain effects of type 2 diabetes. These studies draw on functional magnetic resonance imaging as a means of determining underlying neuronal pathways and neuronal responses which are impacted.

Marc Grynpas
Grynpas, Marc
PhD
U Of T Appointments

Professor, Department of Laboratory Medicine and Pathobiology

Other Appointments

Director, Bone and Mineral Group

Contact Information
Mount Sinai Hospital
600 University Avenue, Suite 840
Toronto, ON M5G 1X5
Phone: 416-586-4800 x4464
Fax: 416-586-1554
Grynpas@lunenfeld.ca
View website
Diabetes Related Research Activities:

Our research focuses on the effects of diabetes on the skeletal system using pre-clinical models. Examples of our research includes:

1) Effect of Vanadium Treatment on Bone Loss and Bone Quality in Rat Models of Diabetes. Vanadium compounds have been shown to be effective in experimental diabetes and insulin-resistant hypertension. However, these agents are known to accumulate in bone mineral where vanadate substitutes for phosphate. It is therefore essential to understand the long-term effects on these compounds on bone quality. (Facchini DM, Yuen VG, Battell ML, McNeill JH, Grynpas MD. The effects of vanadium treatment on bone in diabetic and non-diabetic rats. Bone. 2006; 38(3):368-77)

2) The effect of Rosiglitazone treatment on bone quality in rat models of type 2 diabetes and osteoporosis. Rosiglitazone (RSG) is an insulin-sensitizing drug used to treat patients with Type 2 Diabetes Mellitus (T2DM) to improve glycemic control. The ADOPT clinical trial showed that women taking RSG experienced more fractures. The purpose of our study is to understand the mechanism by which RSG induces limb fracture and alters bone quality in the insulin resistant Zucker Fatty rat.

3) Comparison of the skeletal effects in the treatment of type2 diabetes with Sitagliptin (a DPP4 inhibitor) or Pioglitazone (a PPRgamma agonist) in mice fed a high fat diet.